Gain-induced switching in metal-dielectric-metal plasmonic waveguides
نویسندگان
چکیده
The authors show that the incorporation of gain media in only a selected device area can annul the effect of material loss, and enhance the performance of loss-limited plasmonic devices. In addition, they demonstrate that optical gain provides a mechanism for on/off switching in metal-dielectric-metal (MDM) plasmonic waveguides. The proposed gain-assisted plasmonic switch consists of a subwavelength MDM plasmonic waveguide side-coupled to a cavity filled with semiconductor material. In the absence of optical gain in the semiconductor material filling the cavity, an incident optical wave in the plasmonic waveguide remains essentially undisturbed by the presence of the cavity. Thus, there is almost complete transmission of the incident optical wave through the plasmonic waveguide. In contrast, in the presence of optical gain in the semiconductor material filling the cavity, the incident optical wave is completely reflected. They show that the principle of operation of such gain-assisted plasmonic devices can be explained using a temporal coupled-mode theory. They also show that the required gain coefficients are within the limits of currently available semiconductor-based optical gain media.
منابع مشابه
Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale
We review some of the recent advances in the development of subwavelength plasmonic devices for manipulating light at the nanoscale, drawing examples from our own work in metal-dielectric-metal (MDM) plasmonic waveguide devices. We introduce bends, splitters, and mode converters for MDM waveguides with no additional loss. We also demonstrate that optical gain provides a mechanism for on/off swi...
متن کاملLarge enhancement of second-harmonic generation in subwavelength metal-dielectric-metal plasmonic waveguides
Plasmonic waveguides have shown the potential to guide subwavelength optical modes, the so called surface plasmon polaritons, at metal-dielectric interfaces. In particular, a metal-dielectric-metal (MDM) structure supports a subwavelength propagating mode at a wavelength range extending from DC to visible. Thus, such a waveguide could be important in providing an interface between conventional ...
متن کاملNonlinear couplers with tapered plasmonic waveguides.
We suggest and demonstrate numerically that, by employing tapered waveguides in the geometry of a directional coupler, we can enhance dramatically the performance for optical switching of nonlinear plasmonic couplers operating at the nanoscale, overcoming the detrimental losses but preserving the subwavelength confinement. We demonstrate that, by an appropriate choice of the taper angle of the ...
متن کاملNanoscale Plasmonic Devices Based onMetal-Dielectric-Metal Stub Resonators
We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM) stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM wav...
متن کاملDesign and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring
In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...
متن کامل